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As is well-known all the laws of geometrical optics may be 
deduced from Fermat’s principle1

or from the mathematically equivalent principle of Huygens1.
In (1) T is an arbitrary parameter of the integration curve from 
P' to P, and n is the ray index given by

c being the velocity of light in vacuo and vr the velocity of the 
ray, i. e. of the energy current2. Thus the integral in (1) is 
simply c times the time-interval from P' to P. In the most 
general case, vr and thus n are functions of the point, the direc­
tion, and the colour, i. e. the frequency of the light. In geometrical 
optics we only consider monochromatic light, i. e. we abstract 
from dispersion phenomena. If for a certain medium n is inde­
pendent of the point, the medium is homogeneous, if n is inde­
pendent of the direction, it is isotropic.

In most textbooks on optics3 Fermat’s principle is only 
proved to hold true for a finite number of reflections and refrac­
tions in an isotropic medium with piece-wise constant index of

1 This is shown most completely in Carathéodory (1937). In this paper the 
theory is developed quite generally for an inhomogeneous, anisotropic medium 
by means of the methods due to Hamilton. Furthermore, it also briefly outlines 
the history of the two famous principles.

2 n is often erroneously stated as being the index of refraction, nn = —, 

vn being the normal or phase velocity. This statement is only true in the case 
of isotropic media, the normal and the ray directions as well as v and vp 
coinciding only in this case.

3 See e. g. the well-known textbook of Drude (1900) or the modernized 
version of this standard treatise: Försterling (1928).

1



4 Nr. 8

refraction. Furthermore, Huygens’ principle is as a rule only 
stated but not proved1.

Now it is an obvious task to deduce the two fundamental 
principles in the general case of an inhomogeneous, anisotropic, 
absorbing medium from Maxwell’s electro-magnetic theory of 
light, at the same time deducing the conditions for the validity 
of geometrical optics. It is the purpose of the present note to 
work out this programme, which surprisingly enough has not, 
as far as we know, been done before. We thereby proceed by 
combining a method due to Sommerfeld and Runge2 with the 
general theory of partial differential equations of the first order 
and their connection with the calculus of variations.3 Although 
the following considerations do not, of course, yield any new 
results, they may perhaps be of some pedagogic interest.

§2.
Any propagation of light in an arbitrary noil-ferromagnetic 

medium is governed by the four Maxwell equations

_ _ 4 TC M , 1 w'frot H = — a • 7s 4---- ¿ • 7s
c c (1)

rot 71? (2)

div f -E — 0, div/i77 = 0, (3)

in which t = e (æ, y, z) and a = a (.r, y, z) are symmetric tensor­
functions (indicated by a dot in all products) and p = g (x, y, z) 
a scalar function (no dots in the products). The main equations

1 See e. g. the most modern textbook on optics: Born (1933). In Lande 
(1928) Huygens’ principle is deduced from that of Fermat, but this principle 
itself has not been proved.

2 Sommerfeld and Bunge (1911). This method is also described in Born’s 
textbook, in Planck (1927) and Jentzsch (1927).

3 See e. g. Courant-Hilbert (1937) or Carathéodory (1935). The method 
of Sommerfeld and Runge is in fact only a special case of a general method 
for obtaining the characteristic equation belonging to an arbitrary partial 
differential equation of the second order with n variables, see Courant- 
Hilbert (1937) chap. VI § 10.1. Furthermore, the same method has been used 
by Dirac (1930), p. 120, to deduce the corresponding transition from wave

d2.S
to classical mechanics. In this calculation a term — Z -—- has, however, er- 

r ¿*7?
roneously been omitted; this term is just important because the condition that 
it. may be neglected imposes the restriction that the radius of curvature of the 
“path” is to be large compared with the wave-length (cf. p. 8 below). 
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aie (1) and (2), while (3) only imposes certain conditions on the 
direction of the field-vectors /sand //. In fact it follows from 
(1) and (2) that if (3) is satisfied at the initial time, (3) will 
be satisfied for all times. We eliminate // between (1) and (2) 
by taking the time derivative of (1) and rot of (2), obtaining 
by means of the vector identities

and
rot y A = (p i ot A + [grad X A 

rot rot A = —z/A + grad div A
(4)

the general wave equation

z/A7— grad div /7~
grad /t

X rot /< (5)

Having calculated /s1 from (5) and the boundary conditions we 
obtain // from (2). We now assume the time variation of /s' to 
be strictly harmonious (otherwise we only need expand /s' in a 
Fourier series) i. e. we put

AJ = FeiMt, M = 2nv, (6)

which inserted in (5) gives the lime independent wave equation, 
being a system of 3 simultaneous, linear, homogeneous, partial 
differential equations of the second order,

z/JP— grad div JF +
gra d fi X rot F ) _ V’ -P+ ’ -P = ° • (7)

Here c
Áq -

M (8)

is the vacuum wave-length divided by 2/r.
Now geometrical optics is just characterized as that branch 

of optics in which we may consider 20 as infinitely small, i. e. 
strictly speaking obtained by making the limit Zo —>0.In order 
to obtain a solution of (7) which will approximately describe a 
light-ray, i. e. a wave propagation which vanishes outside a very 
narrow region which in the limit 20 0 may be considered as a
geometrical curve, we put F approximately equal to a homo­
geneous plane wave

A1 = A (æ, y, z) exp — S (x, y, z) (9)
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in which the amplitude A — A (x,y,z) is a slowly varying 
vector-function, being approximately constant along the light­
ray and zero outside it, and the phase function S = S (,r, y, z), 
describing the wave fronts, deviates but little from the linear 
function n(s-r) = n (sxx + s ij 4- s_z). (In order to obtain the 
exact solution we had, as is well-known, to superpose plane 
waves with slightly different wave vectors «)• Using the well- 
known vector identities (4),

grad (yip) = y grad + z/jgrad y,
, div(cpA) = m div A + (A • grad cp)

and

grad (A • //) = (A-grad //) + (//-grad A) + [.4 X rot //] + [If X rot A

0)we

rot

9

(A-grad (grad S)) +
+ (grad S-grad .4 ) + [grad S’ X rot A]) exp

/
= , exp 

>-o

' -S’
¿0

grad div L1

A . /S) + exp ? S’] ./A 
zo .

S [grad S X A] + exp 
J

. ..... [<■

— S grad div A . 
J

obtain (using furthermore the fact that rot grad

* S rot A 
_Zy .

(11) inserted in the

with exp , gives

wave equation (7) finally, after division

(— (grad S)2 + grad S’ (grad S- ) + fit J A + î’Â0 ^(grad S- grad A) -|- 

+ A /S’ — grad S div A — (A • grad (grad S’)) — [grad S X rot Aj +

grad/i r , £,------*- X [grad S X Aj
d

- —o' • A+ Zq ( /A— grad div .4) = O,

in which grad S(grad S’• ) denotes the tensor product of grad S’ with 
itself. If now Z() is a very small number, we see in fact that (9) is a 
solution of the wave equation (7) if S’ is a solution of the equation
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(— (grad S)2 + grad S (grad S- ) + . 1 = O. (13)

This equation is, however, as an equation foi- .1 , a linear homo­
geneous vector equation. Consequently the necessary and suf­
ficient condition for its having other solutions than JI == O con­
sists in the determinant vanishing, i. e.

— (grad S)2 + grad 5 (grad S- ) + p,e •

'(9S\2 ,dS0S d_SdS
ß xj xy d x ô y ’ ^8xz d x d z

2 SSÔS
’ ^yz + 8~y dztl£yy — (g™dS)2 + = 0, . (14)

in which (,r, y, z) is an arbitrary Cartesian coordinate system. 
This equation is just the so-called characteristic equation belong­
ing to the wave equation (7). It is a partial differential equation 
of the first order and the degree 6 (viz. equal to the product of 
the order of and the number of equations in the wave equation). 
We shall, however, see in a moment that the degree of (14) is 
in fact only 4. Before doing so we shall state under what con­
ditions the terms in (12) with z0 and Z2 may be neglected in 
comparison with the first term. They are, obviously, since the 
dimensionless quantity gradS is of the order of magnitude 1, 
the following:

(a) z0 ((grad S • grad A) — grad S div J. — [grad S X rot A] ) « J

«MI (z,Á- = 1,2,3)
(15)

(b) ¿o C— (gi’ad (grad S) • )) A « A

i. e. «1 (i,k = 1,2,3)
(1G)

(c) ¿0 ''x[gra<l.S’X.l]

«/< (Í = 1,2,3)
(17)
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(d)
(18)

in which1

1 C.f. e.g. Bohn (1933) p. 261.

4 7T Z- 
C

(19)

(z(: the coefficient of absorption in the direction of the z’th prin­
cipal axis of o', <7(. : the corresponding length of penetration).

¿¡(¿4 - grad div.4) «.4
(20)

(e)

(a) \ (c) means that each component of the amplitude .4 is Io 
vary so slowly that both the first and the second variation of .1 
in a distance of the order of magnitude of the wave-length 20 
is negligibly small compared with | .4 |. If we consider a sharply 
defined light ray, .1 z/>z7/ obviously vary strongly in a distance of 
the order Zo on the border between the. ray and the shadow. In 
this region we shall, consequently, expect deviations from the laws 
of geomelrical optics: the phenomena of diffraction.

(b) .means that the phase function S is to deviate so little from 
linearity that ils second derivatives are negligible compared with

1 . , . ., i. e. the principal radii of curvature of the wave fronts given 
'-d
by X — const are Io be large compared with 20. This statement, 
again, is equivalent to two other conditions: (a) the radii of cur­
vature of the tight rays I hemselves are to be large compared with Zo. 
(d) no points in which the light rays diverge or converge are to 
be considered (as in these points one or both of the principal radii 
of curvature vanish). Finally we see from (l't) that, S being 
determined by the variation of the product /ie, our condition (16) 
demands that fie varies so slowly that its variation in a distance 
of the order Zo is negligible compared with fie itself:

<<l^ik (i.k.l= 1.2.3). (21)
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(c) means that p is to vary so slomhj that its variation in a 
distance of the order Âo is negligible compared with p itself. From 
(21) it then follows that the same applies to the dielectric tensor e 
itself.

(d) means that the medium is to have so small a conductivity 
tensor a that the principal lengths of penetration d- are very large 
compared with the wave-length Zo. This condition is, besides, 
obvious, as we could not otherwise speak of light rays at all, the 
rays being al once absorbed.

(f) Finally we see that geometrical optics is only valid so long 
as all questions regarding phenomena of intensity, polarization, 
and interference, and as already stated also of dispersion, may be 
disregarded.

Having stated the exact conditions for the validity of geo­
metrical optics, we shall now investigate the equation § 2 (14), 
which contains all its laws. Firstly, we note that the equation is 
invariant against all coordinate transformations. Secondly, that 
the dielectric tensor e being always symmetric, it may in each 
point be transformed on diagonal form, and to obtain simpler 
formulae it will, therefore, be convenient to transform to new 
generalized, orthogonal coordinates

Gs 0 = (£(æ, g, z\ V (■*’, y, z), £(•*-, y» z)) 

</.s2 = dx2 + t/i/2 + dz2 = g¿ d £2 + gr‘drf2 + g- d 'Q2

(g-‘, 9r¡y 9; are the only non-vanishing elements of the 
damental metric tensor gik

Here the transformation matrix 

fun-
of the (Í, 0 coordinate system).

is determined so that e is
dx1

in each point of the (£, ^, £) coordinate system on diagonal form. 
In case the medium is homogeneous, the transformation becomes 
simply orthogonal with constant coefficients and g¿ = g^ = g- — 1, 
otherwise it consists in general of non-linear functions of (x, y,z),
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(no summationhave

9^

1
9^t¡

1

(grad S)2 —
41

c2 c2

(covariant comp, of grad S)+ (grad S)2

J.
9r¡

1

,9WZ^VC
S|S?

^,?,ç(M’O, (grads)2

S¿, 

9^9e^ 

(grad S)2 S2

= 0

(grad S)2
1-

ó'¿(grad S)2 h (grad S)1 (grad S)&.
S; our 

in case of an orthogonal 
= J- Si

9a

ç2 ç2 ç2 O £ O O £ 

~ 3~

(grad S)2 —yi'2\ 
,---------------------*_

o S
(iq„, (i- being then functions of (i, w, u). Now -7— — S«, = S„,

1 u'' ' o £ - 01] '
yy = S; are the covariant components of grad S in the (¿, ?/, 0 

coordinate system, and the elements of the tensor in § 2 (14) 
the mixed components, (¿elk
Expressed in terms of the covariant components St,Sz/,¿ 
equation § 2 (14) thus becomes, because

coordinate system we
over z),

S^S¿;

0¿Z^

= /<(í.

S^i

9>j 9er¡

ds
£9 n

SçSf 
üç^ç

(grad S)2---- — St
1______________

2 s _ _____ s|s|
9!- 9 ri 9ç9'i £ri g$ 9:9*

' (grad S)2 — ± .S'|\

\ 9£t / 9$

/(grad S)2 —— S| (gradS)2 ——S2
I 9$ ____ 9rj
\ 9^

ç2 ç2 ç2
1É__ _ _|____ Ù__ p

9^9^r¡^¡] 9r¡9 9^9 ^^r¡

9 r¡ 9^r¡

(grad S)2 ——S2
<7;

Z**C

Z^ / \
/ (gradS)2—— S2\

i-------- M
\ 9 $r] /

i (g,adS)2-^hj

\ Z**; /J
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Here e}], s* are the principal dielectric constants in the (£,??,£) 
coordinate system. They are in the general case of inhomogene­
ous media functions of zp £. We see in fact, as already an­
nounced, that (2) is a partial differential equation for the phase 
function 5, which is of the first' order and the 4th degree. We 
note that writing each factor of the first term in the form

|1---- &rad A ------Í—? ... We would have obtained (2) in the

(gradó)“— //ft (gradó)“ —

form

(grad S)2 —
(covariant) (3)

If we multiply on both sides with (grad S)2 and next subtract 
(gradó)2 from both sides, (3) may also be written in the form

(gradó)“ — ¿uíc (grad ó)“ —(gradó)“ — f/xç
= 0. (covariant) (4)

We note that the two last equations are just the generalization 
of the well-known normal equation of Fresnel (in the covari­
ant form).

In order to prove Fermat’s and Huygens’ principles it is now 
only necessary to write (2) in Hamiltonian form and then cal­
culate the corresponding Lagrangian function L, which function 
shall then turn out to be equal to the integrand in § 1 (1). By 
this procedure there is, however, a difficulty because L, in the 
case of an isotropic medium, becomes homogeneous of the first 
degree in x, y, z, the ray index being in this case only dependent 
on x, y, z—and furthermore equal to the index of refraction. In 
this case the Legendre transformation from the variables x, ÿ, z 
to the generalized momentum variables pz, being neces­
sary in order to write the equations in Hamiltonian form, be­
comes impossible1. In order to avoid this complication wre shall, 
therefore, assume that all the light rays considered are of such 
a kind that wre may as the parameter t in § 1 (1) choose one

1 Courant-Hilbert (1937) chap. II § 9.



12 Nr. 8

of the variables £, ?/, £ themselves which will in practice always 
be so1. The equation for the phase function S, (2), containing 
only terms of the 0th, 2nd and 4th degree, we may solve it with 
respect to St, assuming in what follows £ to be the parameter. 
We thus in general obtain two different solutions (which may 
be shown always io be both real) corresponding to the well- 
known fact that we have in general two different kinds of rays, 
called the ordinary and the extraordinary, respectively, which 
coincide only in the case of isotropic media:

(5)

Here (5) is just of the form of a Hamilton-Jacobi partial dif­
ferential equation for the phase function S, which function thus 
corresponds to Hamilton’s principal action—or characteristic— 
function, £ corresponding to the time variable. Next H± = 
H± (£, rp £, p>r Pt) given in (6) are the two Hamiltonian functions 
corresponding to the ordinary and the extraordinary ray, 
respectively. Furthermore, p^, p- are the generalized momentum 
variables defined as usual by

P>i Pt = S¡>

We note that the two signs of the first | in (6) do not corres­
pond to two different light propagations, but determine only the 
direction of the light rays. We have chosen the negative sign in 
order to make the normal and the ray directions point to the same

Cf. also Cabathéodoky (1937) p. 9. 
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side of the wave fronts, i. e. have an angle between them less 

than —.

From the general theory of partial differential equations of 
the first order (x p. 11) it follows that the equation (5) has a complete 
solution (i. e. a solution containing three arbitrary constants of 
integration), which may be written in the form

S±(^, 0 = £, ij, 0^+S(?0,ío>tó,
•'Po

P = (£> ^, 0 » Pq = (So ’ 7o ’ £o) •

Here S(£o, iy0, £0) is an arbitrary function of Po giving the initial 
values of S on an arbitrary boundary surface F(£o> ^0» £o) ~ 0- ln 
case this surface is a wave front, we have 5 (Po) = const on this 
surface. (We note that S (P) corresponds to the indefinite integral,

. . . . , .\ Ld% to the definite integral in the case of differential equations 
‘'Po
with only one unknown.) Next it follows from the general theory 
that (5) is equivalent to the variation problem

<ML±dí=0. (9)
Jp'

The Lagrangian function L occurring in (8) and (9) is, further­
more, obtained by differentiating (8) along the integration curve 
and using (5) and (7)

L±(?,ij, Ö = + (10)

Finally r¡ = ^±(ï) and £ = £*(£) occurring in (8) and (9) are 
the coordinates of the ordinary, respectively extraordinary light 
ray between Po and P. They are given uniquely as solutions 
of the Hamiltonian system of ordinary differential equations

d r¡ dH± ¿ dÇ dH±Í - dS ~ !dd dS ~ <77
(11)

dP>i oH± dpi;
= d£ ~ dr¡

(8)

In the general case the principal dielectric constants the
magnetic permeability as well as the elements of the funda- 
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mental metric tensor g^,gt],g^ of the (£, u) coordinate system 
are functions of £, //, £ and the same, therefore, applies to H±. 
If, especially, they are all constants, H± becomes independent of 

£, and (11) is then immediately solved to

/),. = g- = 0 i. e. [>,. = const = q , = const = c2

// = const = /;; (cj, c2), £ = const = f: (c3 , c2),
i. e.

fl ~ A; (C1 > c2) S ' C*3
z X ¿(12)

; = /c (q , c2) £ + c4.

In the generalized coordinates £, 7/, £ the light rays are thus 
straight lines if f£, t-, y, g*, gt], g- are constants. This is just
the case for a homogeneous medium. Here the transformation 
(.r, y, z) ^ (£,//, £) may, as already mentioned, simply be taken 
as a linear, orthogonal transformation, i. e. a rotation of the 
Cartesian coordinate system. Thus the light rays are also straight 
lines in the coordinates (,r, y, z) of real space. For inhomogene­
ous media the light rays, however, in general are curved lines1.

1 We note that a treatment of geometrical optics based on eqs. (5)—(6), 
which is due to Hamilton, show’s, as already stressed by Hamilton himself, a 
very close analogy with classical mechanics. It was just this analogy which led 
Schrödinger (1926) to his discovery of w’ave mechanics by his idea of inter­
preting the mechanical principal action function of Hamilton as a phase func­
tion of the de Broglie waves (or in mathematical language, of interpreting the
Hamilton-Jacobi eq. as the characteristic equation of a wave equation). In fact, 
starting with the H-.J eq. and carrying out, in the opposite order the calcula­
tions (with Àq —> ti) which led us from the wave eq. §2 (7) to the H-J eq. 
§ 3 (5), just leads to the time dependent Schrödinger wave eq. Consequently, 
conditions corresponding to those in § 2 for the validity of geometrical optics, 
viz. small wave-length, apply to the validity of classical mechanics.

Now (8) just expresses Huygens’ principle, as it follows from 
this equation that if = const — c is one wave front, then we 
obtain the neighbouring wave fronts S = c ± de by drawing 
through each point of the first wave front a light ray and on 
each of these rays mark out the distance ± ds given by

ds = j/g^ d '¿2 + gt¡ d 2 + g- d £2

d'i

|/ dr2 + dy2 + dz2 =
de
n

(13)
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We may now interpret the phase function S±(P,P') = \ nds = c \ dt,
Jp' ,'p'

in which the integral is taken along a light ray between two 
arbitrary points P' and P, as a geodetic distance, equal to 
the time interval, between the points P' and P. (S is then 
called the characteristic function or the eiconal). Two wave 
fronts given by S = c and 8 = c, respectively, may then 
be said to be geodetic parallel surfaces corresponding to 
the fixed distance S (P, P') = c — c', P' being an arbitrary 
point of the first wave front and P the point of intersec­
tion between the ray through P' and the second wave front; 
for it follows (T p. 11 ) that («) 8 (P,P') is independent of P' and (/$) 
ÖS(P,P') — 0 for each fixed P' and P varying in the second 
wave front. Hence, if we plot a geodetic ‘sphere’ with radius 
c — c about each P', i. e. a surface—called a ray surface—having 
the constant geodetic distance c — c from P', then, for each of 
these surfaces, we also have ôS(P,P') = 0. This fact, however, 
just means that the second wave front is the envelope of all the 
geodetic ‘spheres’, which is exactly Huygens’ principle. We note, 
furthermore, that because of the property Ó8 = 0 the light rays 
may in a generalized sense be said to be transverse to the wave 
fronts. They are, therefore, also called the transversal curves—not 
to be confused with the orthogonal, or normal, trajectories, the 
direction of which are given by grad 8.

Introducing n from (13) in (9) and comparing with § 1 (1), 
we see that in order to establish Fermat’s principle it now only 
remains to prove that n defined by (13) is identical with the ray 
index defined in § 1 (2). We treat isotropic and anisotropic media 
separately.

(A). Isotropic media.
Such media are characterized by the dielectric tensor reducing 

to a scalar, i. e. eg = = eç = e = e (x, y,z). Consequently we 
can put (£, r¡, 0 = (.r, y, z), i. e. our fixed Cartesian coordinates. 
In this case the ordinary and the extraordinary rays are seen 
to coincide, since our equations reduce to the following

(14)
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sx + w = Sx- -8- -8= =
dH Py

dx 6 Py |/p* - ?
~Py ~PZ

L = —H = 1/fie-- Pi - 2 i Pz +

ds i / ”

dx
|/1 1 </“ t ^2 _

n = n (.r, y,z) = —-

dx

O i. e. (gradS)2 = fis (15)

dz dH Pz
( 1 ß)

dx °p2 1 / 2 2

Py +p1 2z fie
(17)

[z P2y \ZP£—P2y-P2z

1 Born (1933) p. 48.
2 Born (1933) p. 225.

]/fi (x,y,z) e(x,y,z) . (19)

(19) is, however, just the Maxwell relation for the index of 
c

refraction =—, q.e. d. From (16) it next follows, bv means of 
v

(15) and (7), that the normal direction, gradS, and the ray 
direction, (l,y, z), coincide:

gradS = (—//, py,p:) = |/p/? —p2—p2(l, y, z) . (20)

Consequently, the index of refraction and the ray index coin­
cide. (15) together with (19) and (20) may finally be written 
in the well-known form1

gradS = ns = ŸfieS, grad 8
I grad S I ' (21)

(B). Anisotropic media.
In this case it would be extremely laborious to determine zzà 

directly from (13) and verify that it is a solution of the well- 
known ray equation of Fresnel (in the contra variant form) 
obtained from the normal equation (4) by making the trans­

formation s->—$, nn —> — , (together with = ,7(-ê') 2

+ g,(g'')2 !

•TI“
(contravariant) (22)
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in which

$ = (ê', = — ---------------O (contravariant) (23)
/ .7; + 9 u V + f/i t

is a unit vector in the ray direction and 5", 5 , w its contravarianl 
components in the Í, z/, £ coordinate system. We may, however, 

make a short ent, observing that the index of refraction n = — 
° " Vn 

is equal to the rate of change of the phase function S in the 
direction of the normal given by ds = const, grad S

dS = (gradS, ds) = nnds, (24)

c
whereas the ray index nr — — is equal to the rate of change

of S in the ray direction given by flê = const. (1,^,0

dS = (gradS, d3) = nrdé. (25)

Considering two neighbouring wave fronts S and S + dS, we 
have ds = décos (s, $) = dé(s-&), and the well-known relation
follows : nr = nn(s-$). (26)

From (24), (5) and (7) we now have that the covariant com­
ponents of gradS still satisfy (21) with n = nn: 

grad S = (St, S\, S¿) = (— H, pt], p¿) = nn (s<, sr., s:). (covarian t) (27)

Introducing (27) in (4), nn = 1¡, s¿, s,r s-) is thus seen to
be a root in Fresnel’s normal equation (in the covariant form)

(covariant) (28)

Introducing (27) in (IO) then just gives, 
for the integrand in (9) of either sort of

with the use of (26),
ray

Ld'i = (—H + p^+pfödS = (nns¿+ + nns^) d% = 

= nn (stö’ + + s^) JÅjt + + gç =

= nn(s-S) dé = nrdé,

(29)

D. Kgl. Danske Vidensk. Selskab, Mat.-fys. Medd. XXII, 8. 2
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q.e.d. 27^ satisfying the normal equation (28) it follows as usual 
that satisfies the ray equation (22).

In conclusion we see that Fermat’s principle has now been 
proved for both the ordinary and the extraordinary ray in the 
most general case of a non-ferroinagnetic, absorbing, inhomo­
geneous, anisotropic medium under the one assumption that the 
magnetic permeability scalar and the dielectric tensor e are 
continuous functions of x, y, z. If, however, we have a discon­
tinuity surface, i. e. two neighbouring media with different values 
of y and f, a case which is of the utmost practical importance, 
then we have—for either sort of ray—in the first medium a certain 
Hamiltonian 7¥(1) and Lagrangian L(1) and in the second medium 
another one, //(2) and L(2), respectively. Now in both media the 
phase function 5 satisfies the Hamilton-Jacobi equation (5) and 
is given by (8). Next it follows from the general theory of partial 
differential equations1 that S is uniquely given from the equation 
and the boundary conditions, i. e. the functions F(£o,^o,£o) ~ 0 
and 8(ï0, jy0» £o) 111 (8)- Thus, if the values of 8 are given on a 
certain surface F(£o, t¡»0, £0) — 0 in the first medium, the values 
of 8 on the discontinuity surface will be determined by the 
equation. Next, these values of 8 being the boundary values in 
the second medium, we see that the behaviour of 8 is uniquely 
determined in both media and that 8 is a continuous function 
given by (8) throughout. From this fact, which is equivalent to 
the general validity of Huygens’ principle also for discontinuously 
varying t and p, follows the well-known law of refraction (as 
well as that of reflection) in the general case of both media 
being inhomogeneous and anisotropic, the directions of the light 
rays (1, ?/, 0 being simply given on both sides of the discon­
tinuity surface by (11). It may be shown2 that the general law 
of refraction may equally well be obtained from postulating 
Fermat’s principle to hold true also for discontinuity surfaces. 
Consequently, this principle is also generally valid.

It may be of interest to note that in the case of isotropic media these 
facts may be seen quite elementarily. It follows, namely, in this case 
from (21) that

n (a ■ dr) = (grad 8 • dr) = dx + — dy + ~ dz = dS (30) dx dy dz
1 Courant-Hilbert (1937) chap. II.
2 Carathéodory (1937) § 23.
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is a total differential, and as S is, furthermore, continuous throughout, 
we therefore have

(Ç) n («•</>•) = 0 (31)
•’c

for an arbitrary, closed curve C independent of, whether or not C 
passes any discontinuity surface1. From (31) it follows firstly, in the 
same way as in electro-dynamics, that

(ns)tg = (n«)J (32)

i. e. the continuity of the component (n«)tg of-the vector ns in the tan­
gent plane of the discontinuity surface. (32) is, however, just the law of 
refraction, which states (a) thals^ and s(ï) are both lying in the plane 
of incidence and (ß) that /q sin = n2 sin ip2.

Secondly, it follows from (31), if C is a light ray from P' to P and 
K an arbitrary different curve between P' and P, that

\ nds = I \ n (« • dr) I < \ ndr (| s |) = 1). (33)

The curve integral of n is thus a minimum along the light ray C from 
P' to P and the first variation of \nds consequently vanishes along C, 
which is just Fermat’s principle § 1 (1). We note, however, that nds = 0 
does not always mean jj nds = min.; it may also, as is well-known, mean 
a relative minimum or even a maximum, e. g. by reflexions from certain 
curved surfaces. In fact the proof in (33) is only valid under the as­
sumption that the light ray field ns is a unique vector field, but in the 
case of reflexions this does not hold, two or more rays passing through 
each point. Nevertheless it is possible to interpret the correct formula­
tion of Fermat’s principle §1 (1) in terms of a minimum statement2:

A curve C may then and only then be the path of a light ray, if 
every point P of C is an inner point of at least one subcurve of C with 
the following property: the integral \nds along this subcurve between its 
endpoints P' and P" has a lower value than the same integral taken 
along a different curve having the same endpoints P' and P" and lying 
in a certain narrow neighbourhood of C.

We see that by this formulation the above proof in (33) is also valid 
for reflexions.

Summary.
As is well-known all the laws of geometrical optics may be 

deduced from Fermat’s principle or the equivalent principle of 
Huygens. It is the purpose of the present note to deduce these 
principles from Maxwell’s electro-magnetic theory of light in

1 We note that (31) here follows directly from the theory, whereas in Born 
(1933) p. 50 it is deduced from the law of refraction.

2 Carathéodory (1937) p. 11.
2*
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the general case of non-ferromagnetic, absorbing, inhomogene­
ous, anisotropic media, at the same time obtaining the exact 
conditions for the validity of geometrical optics. In § 1 the pro­
blem is stated. In § 2 the equation for the phase function is 
deduced together with the conditions mentioned. In § 3 the phase 
equation is written in Hamiltonian form and Fermat’s and 
Huygens’ principles are deduced together with the generalizations 
of the normal and ray equations of Fresnel. It is seen that 
the li occuring in Fermat’s principle is the ray index and not 
the index of refraction, as seldom stressed in the literature. 
Finally the case of discontinuity surfaces is discussed.

Institute of Theoretical Physics of the
University of Copenhagen.
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